If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+10x-204=0
a = 4; b = 10; c = -204;
Δ = b2-4ac
Δ = 102-4·4·(-204)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-58}{2*4}=\frac{-68}{8} =-8+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+58}{2*4}=\frac{48}{8} =6 $
| 3h=14/7-21/7h-10 | | 8y+4=7y+29 | | 5(x+1)+3=4x+13 | | 5a-10×3=45 | | 3x+2-5=14x-6x | | 0=x+27 | | 0=x=27 | | -3(2y=7)=-18 | | 70-10y=0 | | 0=t^2-6t-18 | | 5x÷7=10 | | 346-2r=336 | | (4/z-1)-(2/3)=(2/z+1) | | -10x-100=0 | | 128-2q=122 | | 0=32-4n | | 2(3x^2+4)=19x | | 4x+3-6=21 | | 47-2p=39 | | 562m=50 | | 1.2=5x+3.4 | | 2.2=5x | | 70+2m=78 | | 0=90+30t-5t^2 | | (2x-4)(6+9x)=0 | | 52.4d-26.72=235.63 | | (600/x+5)(x-4)=600 | | 9x-18=6(x-2) | | -3x*2+9=7 | | 9x-18=6(6x+2) | | 25+2z=35 | | x/x+4=4/x+4+2 |